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ABSTRACT 

A cross correlation between two sequences   U  and   V   of length   n   is 
defined a s 

n 
P; 

Uo V 
i= 1 

—    /,     (-1) u. o v.   ; uo v   =     <   , n.^.v/ i       i 1,   u=v 

p.   =   remainder 
1 

y u.+v. 
r=ij j P0 = o, 

where the elements   u,    v   of the sequences are selected from the alphabet 
0, 1, 2, ... , N-l.     Investigated are  sets of mutually orthogonal sequences, 
i. e. ,    ©   is such a  set iff 

Uov = o, yu, Vf ©3u/ V, 

given  N  and   n.     Of interest is the maximal number of sequences in ©  and 
the construction of the canonic form of © representative of all possible 
equivalent solutions.     This class of orthogonal sequences has application in 
continuous-phase frequency shift keyed communication,   where the   N 
possible frequencies are equally spaced by any odd number of half cycles per 
signalling interval   T,   and the duration of the mutually orthogonal waveforms 
is   nT. 

In the binary case (N   =   2) a one-one,   onto linear transformation between 
n   orthogonal sequences of length   n   in  ©   and an   nXn   Hadamard matrix is 
exhibited.     Canonic forms for   ©'s   of maximum size are found for   n   odd,   twice 
an odd integer,   and a power of two.     In these instances the maximum number 
of sequences in ©  is two,   two,   and   n,    respectively; the number of sequences 
in ©   cannot exceed the length of the sequences for any  n  that is a multiple 
of four. 

In the general case (N> 2) results are less extensive,   especially for 
N   odd.     A useful construction technique is given for obtaining an ©   of rm 
sequences of length  n  in   rN]  elements from a smaller orthogonal set of   m 
sequences of length  n  in  Nj   elements.     For   Nj   =   2  and   m   =  n   it is shown 
that this construction yields the canonic form of the  ©   matrix of maximum 
size. 

Accepted for the Air Force 
Franklin C.   Hudson 
Chief,   Lincoln Laboratory Office 
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SYMBOLS 

© addition modulo  N 

+ arithmetic addition 

©)• summation modulo   N 

y arithmetic summation 

o correlation operation 

• dot product operation 

X -by- ;   arithmetic multiplication 

C ,   t is a member of,   is not a member of 

3 such that 

13.3 there exists,   there exists no 

Y for all 

« ,   iff; =» if and only if; implies that 

_L, JL is orthogonal to,   is not orthogonal to 

{    \ set 

c is subset of 

U union (of sets ) 

U Hadamard matrix composed of the elements 0 and 1 with 
all  0 's   in the first row and last column 

W H  with 0 and 1 replaced by 1 and -1,   respectively 

J set of N integer elements   0,1,2,... N- 1 

k, t,m, r, s positive integers 

\l\ arbitrary set or matrix of sequences of length n  composed 
from  J 

n sequence length;   number of columns in matrix 

N number of mutually orthogonal elements 

© orthogonal set or matrix of sequences in  § 

© , U transpose of &,   U 

p. parity between two sequences following the i      element 
of each 

vn 



g 

JT 

if1 

u,v ,w, x, Y 

u 
0 

Ok,  ] k 

set of all possible sequences of length n   composed from  J 

n X n  matrix composed from  J 

inverse of  C 

sequences of length  n  composed from  J 

additive inverse sequence,   i.e.,   U © U   =   0   -    0 

identity sequence of all zeros,   i.e.,   U©^   =   U 

sequence of k  consecutive   O's,   1's 

vm 



I. INTRODUCTION 

This work was motivated by studies proposing the use of binary 

continuous-phase frequency-shift-keying (FSK) (with a frequency spacing of 

l/2T,   where   T  is the signalling interval corresponding to one data bit)   for 

high-power low-frequency communications in military applications.     Of 

interest here are mutually orthogonal  N-ary continuous-phase FSK wave- 

forms composed from mutually orthogonal signals equally spaced in frequency 

by any odd number of half cycles per signalling interval   T. 

Waveforms are represented by sequences of integers corresponding to 

the subscripts of the   N  possible frequencies 

f.   =  f„+i Af;   0< i < N-l, 
1 0 

where   2TAf  is an odd positive integer.     Signals of duration  T  at frequencies 

f.   and  f. (i/j)  are orthogonal;  2T(f. - f.)   =   2TAf(j - i)   =  | e^n [  integer if j 

and   i  have | I   parity.     Consequently,   the contribution to the cross 

correlation of two distinct continuous-phase waveforms in a given signalling 

interval is   0 if f. / f.   or <    , >   if  f.   =  f.   and the phase difference is an  \    . .    \ 
J       i 1-1/ J i 'odd    1 

multiple of ff   radians at the beginning of the interval. 

Given  N  and a fixed sequence length,   the problem is to construct the 

maximal number of mutually orthogonal sequences,   preferably in a canonic 

form representative of all possible equivalent solutions.     The problem is 

complicated by the three-valued contributions to the cross   correlation of 

sequences;  more commonly such contributions are only two-valued as in 

FSK with a frequency spacing of an integral number of cycles per signalling 

This form of modulation is sometimes referred to as MSK for minimum- 
shift-keying.     The term MSK is usually associated with a particular modem 
where the data sequence and the frequencies of the transmitted waveform do 
not directly correspond bit-by-bit (as in the more common FSK modem) but 
according to a reversible transformation [ Ref.   0] . 



interval.     However,   the task of finding a set of binary (N   =   2) orthogonal 

sequences under the three-valued rule is actually no more difficult than that 

under the two-valued rule because there exists a linear invertible trans- 

formation between the two sets of sequences; much is already known about 

constructing binary orthogonal sequences under the two-valued rule. 

Being inherently a simpler problem which can be treated more 

thoroughly than the general case,   the binary case is emphasized;  the N  =   2 

case is of greater practical interest anyway.     By dealing principally with 

the three-valued correlation rule for  N   =   2,    it is hoped that some additional 

insight can be gained for extending the results for   N > 2   and solving more 

general problems. 



II. DEFINITIONS 

Let the integers   J =   { 0,   1,2,..., N- 1 } represent  N  mutually- 

orthogonal elements,   i.e., 

u o v 
0, u/ v 

1, u = V 
ITu. v e J, (1) 

where   o   is a commutative correlation operation.    Addition of two n-tuples 

U,   Vis performed modulo   N  element-by-element,   i.e., 

U©V   =    (u1©v.)(u1©vj...(u.©v.)...(u   ®v   ), 1        12        2 i       i n       n (2a) 

where  u. © v.   =   remainder 
l       I 

tu. + v." 
f J-\/-u., v. e j. (2b) 

If   g is the set of all possible  sequences of the same length composed from d>, 

3 Uf g3u©u = o.yufg, (3) 

where   U  is the additive inverse sequence and  0 =   00. . . 0 is the identity 

sequence under  ©.    Obviously,   the rules of commutivity,   associativity and 

closure apply in   g under  ©. 

The normalized cross  correlation of two sequences in   g is defined as 

Uo V   =   -   V        (-1)   1   1u. ov., 
n    Li        K I       l 

i= 1 

where the parity between sequences is 

(4a) 

p.   -    remainder 

y u.+v. 

if P0 =  0   ; (4b) 

Unless otherwise stated this initial parity is implicitly assumed for every 
pair of sequences. 



depending on the initial conditions,   p„   may equal  1 in which case the parity 

p.   is changed.    From (1) and (4),   U and V are 

identical 

orthogonal 

antipodal 

' «     UoV = 

U= V 

«|UlV)ai 

U= V 
0 

0 

0 or  1. 

1 

Example:      N =  4,  n =   8,   p„  =   0 

U   =        21330312 
V   =        03320110 

UoV   =   -^(0+0 + 1 + 0-1 + 0-1 + 0) J 
8 

A set   © c § of mutually orthogonal sequences is defined as 

uov =   o.Vu, V f ©3U^ V. 

A biorthogonal set  2  is defined as 

(5) 

(6a; 

UoV for 

all but 

exactly 

one   VCD3V^ U, 

given any  Uf 3.    For any   © ,  a   2  can be formed as 

(6b) 

2 (6c; 

where the prime is used to indicate that   pn =   0   for both sequences in   © or 

both in   © ',   but   pn =   1   for one sequence from   & and one from   © ' ;    except 

for these initial parities   © and   ©'  are identical.    From (5) and (6a) it is 

easily verified that (6c) satisfies (6b).     This implies that if biorthogonal 

sequences are of interest,   one loses nothing by focusing attention only on 

orthogonal sequences. 

Any set of m  distinct sequences of length n  in   g  can be expressed as 

an m X  n  matrix with each row consisting of one of the sequences in the set. 



The matrix is in standard form iff the digital numbers of radix  N   specified 

by the rows are in increasing order from top to bottom.     Two matrices are 

equivalent iff they have the same number of rows and columns and the set 

jUo V|   of numbers resulting from all   (     )   possible cross correlations be- 

tween distinct rows in one matrix is identical to that of the other.     Because 

UoV =   V o U,   any row permutation of a given matrix yields an equivalent 

matrix,   i.e.,   every matrix is equivalent to its standard form.    Since the 

sign of each term in (4a) depends on the parity between sequences,   a column 

permutation of a given matrix does not necessarily yield an equivalent matrix. 

All possible equivalent but distinct matrices can be represented by a 

single canonic form as defined conceptually by the following algorithm.     Put 

all the matrices in standard form.    Set   r = 1.     Compute the arithmetic sum 

of the digital numbers of radix  N   specified by the first   r   rows (numbering 

from the top) of each matrix under consideration.     Eliminate from further 

consideration all matrices yielding sums which exceed the minimum sum 

computed for the first   r   rows.    If only one matrix remains,   it is the canonic 

form.    If more than one matrix remains,   r  is increased by one and the 

summing and elimination operations are repeated.     This process obviously 

terminates with a single remaining matrix before   r   exceeds the total num- 

ber of rows in the matrices  since no two matrices are identical. 

An orthogonal matrix   &,   representing a set of mutually orthogonal 

sequences   {u},   is saturated iff no new row,   corresponding to a sequence 

Vf S,   can be added to   © without destroying mutual orthogonality,   i.e. ,    © 

is  saturated iff TJ V ( §3Vj_U,^U e ©.    Furthermore,    © is maximal iff there 

exists no orthogonal matrix with more rows than   ©,  but with the same num- 

ber of columns and the same value of  N,   of course.    A maximal  ©   is 

obviously saturated but a saturated  © is not necessarily maximal.    The 

latter statement can be verified by examining all possibilities given the 

following canonic forms for  N =   4 and n =   5: 

© 

[0 00 0 0"] 
00 100 
112 11 

_1 1 3 1 lj 
saturated 

0 0 0 0 0 
00 100 
112 11 
122 22 
2 13 13 

L3 2 3 2 3. 
maximal 



III.       SOME USEFUL PROPERTIES 

Lemma  1.    For   N  even,    (U © W) o (V © W)  =  U o V, \/-U, V, W f g 

Proof:    From (1) and the fact that 

u. © w.   =  v. @w.   «   u.   =   v., -V/u., v., w. € t9, 
1 1 1 1 1 lVxil 

(u. © w.) o (v. © w.)  =  u. o v.,-VAi, (7a) i        x I        I l       i'   V    ' 

where   W  is a sequence in   g.    Referring to (4),   for   N  even 

eveni (even /      /TV        \i>       ,-s        \-        i even i , icveni u.©w.) +   v.©w.    is   \    ,,    \   o   u.+v.   is    ]    ,,    [ 
J        J J        J 'odd   > j       j 'odd   » 

(7b) 

so   p.   is also unchanged by the addition of  W.    For  N  odd,   (7b) holds iff 

u. + w.   and  v. +w.   are both s N  or both < N; (7c) 
J       J J       J 

(7a) and (7c) imply  (U© W) o (V© W) =  Uo V,   but the latter does not 

necessarily imply (7c). 

Theorem  1.    For   N  even,  the identity sequence _0  comprises 
the first (top) row of canonic form of any matrix. 

Proof:     If a given matrix  [ft c g has an all zero row,  the first row 

of the canonic form of  fU   is J3,   regardless of whether   N  is even or odd,  from 

the definition of the canonic form.     If   \l\   has no all zero row,   an equivalent 

matrix with an all zero row can always be obtained for   N  even by adding the 

inverse sequence   U  to all rows of  ffi,   where   U  is any row of  ft,   i.e. ,  by 

Lemma  1 and (3),  for any fixed  U f ft, 

|vow| =   {(v©u)o(w© u)f,Yv. Wctn 

and  U©U = _0  is the row in the equivalent matrix which replaces   U c tT\ 
roi" 

A simple counter example for  N= 3,   namely  \\\  =     11 
_2 L 

with cross 



correlations  < - —, —,   - —  > shows that the first row of the canonic form of any 

matrix is not necessarily J3  for   N  odd.    In this case   to   is the canonic form; 

it is impossible to construct an equivalent matrix with a   00   row. 

Theorem 1 permits the simplification of proofs requiring the special 

treatment of the identity sequence   0.     The proofs of some theorems that follow 

become tedious if the membership of  0   is unspecified.     Therefore,   in the 

sequel it is always assumed that   0   is included in the set of sequences of 

interest for   N   even. 

Lemma 2.    If  N =   2,   U =   U  and  U@ U =   0. 

Proof:    From (2a) and (3), 

U©U   =    (u. ©u,) (u,0uj. . . (u. ©u.). . . (u   ©u   )   =   0, 1        12        2 I       I n       n — 

which for   N =   2   can hold iff u.  =  u.   from (2b). 

Theorem 2.    If  N -   2   and _0 e toe g ,   then   to   is  closed only if   m 
is a power of two,  where   m  is the number of sequences in  to. 

Proof:    For   m =   1   and   2,   to   is  closed since _0©J3 =   0^ and 

_0©U =   U,   where  {0}   =   to   for   m =   1 and | 0, U }  =   to   for  m =  2.    Given 

U©V f to.-y-U. v ftn,  m=  2r  and  W/to, 

"V"U ^0,    U© W f&  W   or  V ^   U. 

Obviously,   U © W =   W  iff   U =   0.    Suppose   U© W =  V.     Then from Lemma 2 

and (2), 

u©w©w©v = v©w©v 

U©0©V   =   W©0 

u©v = w, 

but this contradicts the fact  W/to   so   U© W / V.     For closure the number 

of sequences must double by augmenting the sequences generated byju© w} 



because   U© W =   V© W  iff  U =   V.     The proof is completed by induction on 

the integer   r. 

Theorem 3.    If  N =   2,   0 e © ,   ©  is closed and 3W /©3WJ.U, 
yUf &,   then| U © W }   can augment   ©  to yield a closed orthogonal matrix 
with 2m rows,   where   m (a power of two)  is the number of rows in   ©. 

Proof:    Everything but the orthogonality properties follow directly 

from the proof of Theorem 2 .    Given  W /© ~$W o U =   0,-W-U e © ,  by Lemmas 

1 and 2 and (2), 

(U©W)oV   =    (U© W© U)o (V© U)   =    (U© W© U)o (V© U) 

=   (0©W)o(U©V)   =   Wo(U©V)   =   0 

since   U© V e©,   where   U/VfS.    By Lemma  1  (U©W)o(V©W)  =  UoV=   0, 

•Vu / V   since   U_LV.    Finally,  by Lemmas  1 and 2 and (2), 

(U©W)oU=   (U© W© U)o (U©U) =   (U© W© U)o (U© U) 

=    (0© W) o_0 =   WoO =   0 

because   WJLO. 

Simple counter examples for   N> 2   showing that   fft   can be closed when 

m  is not a power of two are: 

IT; 

The   N =   3   example,   being an orthogonal matrix,   shows that a closed   © with 

a-power-of-two rows does not necessarily result from every augmentation 

for   N  odd. 

Corollary 1.    If N =  2,   0, _1 fS and   © is closed,   then  U©J_ e © 
v U € © >   where   1  =   11... 1   and  U© 1   is the complement of  U (for   N =  2 only), 

Proof:    This follows directly from Theorem 3.    Using Lemmas  1 

("01 n 
1 1 m = = 

.2. L 
N = 3 N 



and 2,   verification is straightforward: 

(U©_l)oU   =   _1°J>  =   ° 

(U©J_)oV   =   _lo(U©V)   =   0,   U/VfS. 

Lemma 3.    The total number of agreements element-by-element 
between every pair of sequences in   &   must be even for any value of N. 

Proof:    Given any   N,   from (1),   (4a) consists of a normalized 

arithmetic sum of + 1's   and   - 1's   resulting from agreements between the i 

elements of the two sequences involved;    disagreements between correspond- 

ing elements affect parity but contribute nothing to the summation.     Clearly, 

the sum can be zero only if the total number of + 1 's   and - 1 's   is even. 

However,  an even number of agreements does not necessarily imply orthogo- 

nality. 



IV.       PRINCIPAL RESULTS (BINARY CASE) 

A.        Relationship to Hadamard Matrices 

Let the normalized dot product of two sequences   X, Yf § 

be defined as 

n 
X«Y =   -   f      x.oy. , (8) n    Li I     7i 

i = 1 

where  x.   and  y.   are the i      elements  (from J) of  X  and  Y,   respectively   , 

and the   o   operation is defined by (1).    Obviously,  from (1) and (8),   X  and  Y 

are 

identical      i ill       (X= Y)        ( x. = y. j 
* X.Y =        o o J l     '[V1;    (9) 

orthogonal ) I 0 J       ( X J_Y J        ( x. 4 y. ) 

the orthogonal concept of (9) should not be confused with that of (5).    A set 

ITlcg   of mutually orthogonal sequences under* is defined as 

X.Y   =    O.VX, Y elTOX^ Yf (10) 

in a fashion similar to (6a).    Since   X«Y ^ 0,  a biorthogonal set under • over 

J   in the sense of (6b) does not exist. 

A Hadamard matrix  JJ ,  when represented by an  n x n  array of 0 's   and 

1 's,   is a special binary case of (8),  where if sequences are identified with the 

rows of  H ,    then 

X«Y  =   -J,VX' Y€W3X^ Y;     N =  2,  n even, (11) 

i.e.,   every pair of binary sequences in  y agree (disagree) element-by- 

element in exactly half the columns.    A Hadamard matrix is usually presented 

(without loss of generality) with the first row and column composed entirely of 

the same symbol;    it is assumed that this  symbol is   0  for   U. 
TT—  

The X, Y (rather than U, V) notation is used to distinguish sequences in § to 
which the dot product operation is applied. 

(10) is not invoked in this  report but is merely noted for completeness. 

10 



If a Hadamard matrix  y •   is represented with the symbols   1 and - 1 

rather than   0   and   1,   it is seen that the sequences in   y '  can be viewed as  n 

mutually orthogonal vectors in an n-dimensional space.     This follows because 

agreements (disagreements) contribute exactly  n/2   1's  (- l's) to the dot pro- 

duct 

" = i I   xin; ^.yicji.-ih X' 
n   LJ 

i =  1 

i.e., X'.Y1   =   O.VX'.Y'fM'lX'^Y', 

and the vectors of  y '   span the n-dimensional space. 

A biorthogonal set of 2n sequences of length n   composed from the 

symbols   1 and - 1 can be constructed from every Hadamard matrix by aug- 

menting   y '  with  U' ,   a set of sequences identical to those in   U '  except that 

1 and - 1 are interchanged everywhere.     This corresponds to (6c) and the set 

y U W ,  where   y is identical to   y   except that 0 and 1 are interchanged every- 

where. 

Except for   n =  2,  n  must be a multiple of four for any  y.    It has been 

conjectured (but not yet proven or disproven) that  y 's exist for all values of 

n =   4k;    y's have been found for all such n  less than  n =   188[Ref.   1]   and 

many larger values.    Methods of constructing   y 's   have been studied exten- 

sively [ Ref.   2] .    For this reason a reversible transformation between   & for 

N =  2   and   y   could be quite useful,  and indeed,   it is possible to find such a 

relationship. 

Let   3* be an  nxn  matrix with elements from  J ,   and let sequences in 

g  be represented as   nX 1   (column) matrices,   where matrix multiplication is 

accomplished by the usual rule but over a finite field (a commutative ring 

with a finite number of elements,  a cancellation law and a multiplicative 

inverse).    The linear transformation 

3  U]    =    X]   ;   ffV]    =   Y] (12a) 

11 



is invertible (one-one,   onto) iff the determinant of  3",  namely   13" |,   is non- 

zero,   i. e. ,   the linear transformation 

U]    =    3-_1X]   ;   V]    =    j"1 Y] (12b) 

la: |^ o ; 3-_1j =  3-3-"1 =  u, 

where the inverse matrix   3"       is the transpose of the cofactor matrix (adjoint) 

of   3" divided by   | 3" |   and  U  is the  nx n  unit matrix (1's on the principal 

diagonal and  0's   elsewhere)  [ Refs .   3 and 4] . 

Lemma 4.    If N =  2   and n  is even, _J an  nX n   linear invertible 
transformation,   namely, 

1 
with an inverse 3" 

1 

1      1 

1      1 

on sequences in  §3& and   JX, Y[3X»Y   =    l/Z.^X ^   Y  are one-one,   onto, 

where it is assumed that all sequences in JX, Y} begin with the same element. 

Proof:      It is easily verified that   |3"|    =   | 0" — A  |    =   1,   so  3"   and   3" "* 

are both linear invertible transformations,   i.e.,  from (12),   |u|  and |x| 

(|V|   and   JYl)  are one-one,   onto.    For  N =  2,  in (8) 

x.ov.   =   x. ©y. © 1,   from (1) 
I    ' i l    7i 

n 
= ®^u.© ®^]v.©    1,   from (12a) and  3" 

J =i        J = i 

12 



n 
= ©£(u.©v.)© 1   = ©£(u.© v.)©©^(u.® v.)© 

J J J J J J 

j=l j=l J = 1 

=   p    © p.    , ©  1,   from (4b). n l- 1 

Given  &,   the number of agreements when the parity between sequences   p  is 

zero must equal that when  p =   l.V'U, V e ©3U / V   to satisfy orthogonality. 

From (4b),   pn =   0   and for   N =   2 ,   p  changes iff there is a disagreement 

between elements.    Assuming that  n  is even,  from Lemma 3 the number of 

disagreements is even.     Therefore,   p     =   0   and  x.   =  y,,   and   p.    ,   and ° rn 1       ^1 l-l 
x. oy.   are both   0(1)   exactly  n/2   times over the range of  i.     Thus,   from (8) 

X.Y   =   j, Vx ft  Y, 

and © is transformed one-to-one into the desired   JX, Y} . 

Conversely,   for   N =  2,  in (4a) 

u.ov.   =   u. © v. © 1,   from (1) 
1111 

x.©x. + 1©y.©y.+ 1© 1;   i < n 

,  from (12b)  and  3" 

x. © y. © 1; i =  n 
l      'i 

Pi_ 1@ Pi© 1 ;    i < n 

Pn©Pi_1© 1 ;   i = n 

since x. © y.  =  p   ©p.   , 
l     7i       rn     ri-1 

Given { X, Y}3X# Y   =    1/2, -\/"x ft  Y  and the fact that x.©y. =  pn© pi_1> 

since   p     is fixed and the number of agreements (disagreements) between  X 

13 



and  Y  must be exactly  n/2,    p.    ,   =   0(1)   exactly half the time,  as has 

already been seen.    Assuming  x    =  y.   and that  n  is even,   p    =   p„   and 

p.  =   0(1)   exactly half the time.    Therefore,  from (4a) 
I 

1   $       .   , ,Pi-l 
UoV   =   -±   YJ       (-1)    1      (Pi_i®Pi® D 

i = 1 

1   n 

=   — V      (1 - p.       - p.),   from a truth table 

1  .       n    n, _ =   - (n----)   =   0, 
n c    c 

and the specified   |X, Yf   is transposed one-to-one into   & . 

Lemma 5.    If N =  2   and  n  is even,  there exists no   & containing 
more than  n  sequences,   where  n  is the sequence length. 

Proof:    An   & with more than  n   sequences exists iff a corres- 

ponding   JX, Y|3X«Y = — for  X /  Y   exists by Lemma 4.     But since a 

Hadamard matrix   y of n   sequences of length  n (see (11)) corresponds to a 

set of n  vectors,  namely,  those of  U',   that span an n-dimensional space,  the 

specified   JX, Y}   with more than   n   sequences  cannot exist. 

B.        Size of Orthogonal Matrices 

Theorem 4.    If  N =   2   and  n   is odd,  then the canonic form of the 
maximal   & matrix is 

n- 1 n-1 
2 2 

0   c        1     0   c 

k where  n  is the number of columns in   & and  0     represents a sequence of k 
consecutive repetitions of the element   0. 

Proof:    From Theorem 1 the first row of  &  is   0   .    Suppose the 

maximal  $ matrix consists of at least three rows for  N =  2  and n  odd.    Then 
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from Lemma 3 the number of agreements between any pair from the first 

row and any two other given rows of  © must be even.    It is readily verified 

that this is impossible for  n  odd.    Obviously,   the sequence-Lto _0  and 

specifying the smallest binary number is that represented by the second row 

in the above matrix.    The contribution of the first (n-l)/2   columns to the 

cross correlation is cancelled by that of the last (n-l)/2     columns from (4), 

since the parity changes only at column (n + l)/2. 

Corollary 2.     If   N =   2 there exists exactly one ©,   namely,   the 

trivial set [   ] ,  where the number of rows exceeds the number of columns in 

the matrix. 

Proof:    This follows directly from Theorem 4 for  n =   1   and 

Lemma 5. 

Theorem 5.    If  N =   2   and  n  is twice an odd integer,  then the 
canonic form of the maximal   © matrix is 

A11 

n     1     0     n     . 
2 2 

0 10 1 

Proof:    From Theorem 1 the first row of  ©  is   0   .    From 

Lemma 4 an   @ with n =   2(2    + 1)   exists iff a corresponding   }J  exists.    As 

already mentioned  U's may exist only for  n =  2   or  n =   4k.     Therefore,   r = 0 

and  n= 2   are the only possible values for   Q.    Obviously,  the sequence J_ to 

0  above specifies the smallest possible binary number for the canonic form. 

The contribution of columns   1 through n/2 - 1   to the cross correlation is 

cancelled by that of columns   n/2 + 1   through n - 1. 

Theorem 6.    If N -   2,  n =   4k and 3 an n X n  Hadamard matrix 
Ji,  then a maximal  © of n  sequences of length  n  can be found once   H  is known. 

Proof:    Given an  n X n   JJ  matrix,  an  n X n © matrix can be obtained 

by applying the inverse transformation  3"       of Lemma 4 to sequences in  JJ: 

J T- l J 
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where   &    and   JJ    is the transpose matrix of  © and   M,   respectively.     By 

Lemma 5,   Q is maximal.    Although the first row of the   © matrix is all zeros 

iff that of  #  is all zeros,   the resulting   © matrix is not necessarily in its 

canonic form. 
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V. CONSTRUCTION OF ORTHOGONAL MATRICES 

A.        A Binary Construction 

Theorem 7.    If N =  2   and  n =  4k =   (2r+ l)2m,  then 3a method   m 
of constructing a closed saturated   © of 2       sequences of length  n  with the 
canonic form specified by 

U2   = 

U 

1n U,   =   0     ;     £    =   0 ,   the empty set 

2 

; -t =  0 f-1 
(T        1 

2*+l 

Qn2 - 1 l Qn2 
-.,* 

;   <«. *   1 

U.   =   Uj© ©£       U?^!'   : ^ J s  2m;   ° s  * < m, 

-teij 

.th 
where   U.   is the  j       row of the matrix  &,   U.   and  {U?-t   , |  are the key rows 

in terms of which any row can be expressed uniquely,   jj.   is the set of  t's 

corresponding to the places where  1's occur in the binary equivalent of the 

decimal number  j-1,   i.e., 

j-1 = S   2 , 

exp 
and   | ^ means that the subsequence bracketed is repeated exp times. 

Proof:   From the fundamental theorem of arithmetic,  any nonzero 

integer can be expressed as a product of primes that is unique except for the 

order in which the prime factors occur.    Since the only even prime is two and 

because odd x odd =  odd,  any  n   can be expressed as an odd integer (2r + 1) 

times a power of two (2     ).    Only  n =   4k  is of concern here since other values 

of n  are treated by Theorems 4 and 5. 
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From Theorem 1 the first row of the canonic form is 

,n 
Uj   =    0"; 

the second row is obviously the same as that of Theorem 5,  namely 

£_1      S_i 
2 2 

U2   =   0 1 (T        1 ; 

the   U^   specifying the smallest possible binary number for the third row is 

found as follows. 

Let   C..T    and   C..„   represent the cross correlation between rows   i 
IJL IJR 

and j   in columns  1 through n/2   and columns   n/2 + 1   through  n,   respectively, 

i. e. ,   over the left (L) and right (R) halves of the sequences.    For mutual 

orthogonality, 

C. +    C C A-    C 
13L 13R 23L 23R 

0. (13) 

Since the left half of row 1(2) is identical to the right half,   it seems reason- 

able to attempt a  solution with the left half of row 3 being identical to the 

right half.    This along with (13) implies that if the number of ones in either 

half of row 3 is 

even 

odd 

,   then 

c.        = c 
13L ~       13R 

C23L       C23R 

=    0. 

(14a) 

(14b) 

For the even (odd) case of (14a) ((14b)),  the smallest binary number for the 
n     ,       n     ,        Hi       H 

left half of row 3 is     04       1 04       1  (04       1 04).    Choosing the smaller of 

these alternatives yields 

U3   = 
_04       1 0 4J 
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The situation now fits that of Theorem 3 with the closed  &  (including 

0) identified with   {U., U   J  and with  W =  U.,.    Thus,   ©  can be augmented 

with   XJ     and   U   © U_   to yield a closed orthogonal matrix of four rows con- 

sisting of U , , U?, U^  and 

u4 = u2@u3 0*        1 

Note that  U., U    and U,   are key rows as defined in Theorem 7,   and that U., 

being the first non-key row,   can be expressed in terms of nonzero [since 
,n ^)© U =  U,   U.   =   0     need appear explicitly only as the first row]  key rows. 

It can be verified that   £,  =   0,   £    =    |0|,   £,  =    |l|   and   ZA -    JO, l},  accord- 

ing to the definition of  j\   in Theorem 7. 

If k =   1,   (m =  2,   r =   0)  the canonic form of the maximal (by Lemma 5) 

©  containing four sequences of length four is now constructed: 

V 
U2 
U3 

= 

KJ 

0000 

0 10 1 

10 10 

1111 

If k >   1,  the question is can any new rows be added without destroying mutual 

orthogonality ? 

If  m > 2,   at least four new rows can be added as follows.    Assume that 

the new key row  U^   can be composed of four identical subsequences of length 

n/4 and still be J_to  U., U   , IL and U..    It follows that U_ must have an even 

number of ones in the first n/2 columns.    From reasoning similar to that 

which led to U0,   it is seen that   C,CT    =   C..-T    =   0 must hold.    Thus,  the 

problem is reduced to finding the left half of U_ specifying the smallest 

binary number that isJ_to both the left halves of U, and U.: 
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u 

n 
N2 

U 4L 0 lj    . 

But this is equivalent to finding U., given U, and U   ,   so 

u5 =  [_o8      1 o8_  . 

It is easily verified that   Uc J-U-,, U0. 3 2        3 

Using Theorem 3 the following additional rows are generated: 

2 
u6 = u2©u5 

u? = u3©u5 

fi_ 1   Ii-1   £-1 
o8      1 o4      1 08      1 

n     ,       Ii     i       Hi       — 
08      1 08      1 o8      1 o8 

ug = u4©u5 =  u2©u3©u5 

s. 1 
o8     1 

According to the definition of  £.,   £c  =   {2},   £,   =   {0,2},   £=   {1, 2 j and 

£8 =   [0,  1, 2j. 

If k =  2   (m =   3,   r =   0) the canonic form of the maximal (by Lemma 5) 

©  containing eight sequences of length eight is now constructed: 

0000 0000 

00010001 

0 10 0 0 100 

0 10 10 10 1 

10 10 10 10 

10 1110 11 

1110 1110 

11111111 

ul 
U2 
U3 
U4 _ 
U5 
U6 
U7 
U8 
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If k > 2  and m > 3,  it is now shown by induction that the number of rows 
m can continue to be doubled using new key rows until  2       rows are constructed 

Suppose that the canonic form of a closed  & with  4^2     < 2       rows 

and the structure specified in Theorem 7 has been found.    Assume that a new 
L - L key row  U_-v,  .   can be composed of 2     identical subsequences of length n2 

and still be± to every row of  &.    From the key row structure and the defini- 

tion of £.,   it can be seen that 
J 

u2^ = [on 2   l-l 1 

I 
2 

(15) 

Regardless of whether the number of ones in the  U?<t   .   subsequence is odd 
-t + 1 or even,  U?-t   .   must be J_ to both  U,   and U?t over the first n2 

columns.    This follows because the number of ones in both U  t and  U?£    , 

is even over these columns,   so   U. o\J   t   ,   and  U?-t oU?t    ,   are both 
Jt   "•   1 2 times the respective cross correlations  over these columns.    Thus, 

the problem is reduced to finding the subsequence of  U?<L    ,   specifying the 

smallest binary number_|_to both the subsequences 

Qn2 

0n2-'t-l10n2-  -1^ 

But since n2     -1   is an odd integer,  this is equivalent to finding   U,   given U, 

and U?,   so 

u2i+ j =  [o 
, .^-1   . ,-t-l"|2't 

n2 -honZ (16) 

is the appropriate new key row for the canonic form.    The next step is to 

verify that  U?-t   ,   is _|_ to all rows of  &. 

i, From the structure of  Q,  for every   1 £ j £ 2   ,   U.   can have ones only 

in columns   sn2     ,  where   1 s s s 2   ,  and the left half of U.   must be repeated. 
.» J 

From (16),   U?-t   . has zeros in columns   sn2       and an odd number (precisely 
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one) of ones in the bracketed subsequence.    Let  T) be the number of ones in 

the left half of  U..    If  77 is odd,   XJ^j ,  ,J_U.   since  U-.i ,  ,oU.   over the first j ' 2^ + 1       j 2^ + 1       j 
n/2 columns is cancelled by that over the last n/2 columns,  the relevant 

parities being   p„ =   0  and  p    /_ =   1.    The   77 = 0   case implying  U. =   U,   is 

already accounted for:   U   ^    ,1U.   by construction.    If  77 7* 0   is even,   let   s. 
.th be the value of  s   locating the i       one in   U 

J 
If  s.   is even,  it can be verified 

that   U?£     , o U.   over columns 
1 through s ,n2 

I n is cancelled by that over 

n n 

columns 
— +  1 through y + s , n2 

-I 
2 + Sln2 

s . n2 +1 through -_• 

I 

since the number of intervening ones is 
+1 through n 

odd. 

Is   s,   xs odd,  a closer examination reveals that U_,. , , oU.   over 1 2^+ 1       1 
columns  1 through s.n2    ' and n/2 + 1  through n/2 + s ,n2       is zero.     Proceed- 

-I 
ing to the right,  if s     is even,  the contributions of columns   s,n2+i through 

s   n2      and n/2 + s.n2      + 1  through n/2 + s?n2   '' are also zero.    This leaves 

an even number of ones remaining in the left halves of both  U   ^    .   and   U.. 

Hence,  the situation is equivalent to that at the beginning with  77 even;   the 

portions of  U 
2"^ 1 

oU.,  unaccounted for are  reduced,  however,   so a con- 

tinuation of this process leads to an end.    If  s?   is odd,  the contributions of 

columns   s,n2      +1   through (s, +l)n2     -1  and n/2 + s,n2     +1  through 

n/2 + (s , + 1 )n2      - 1   are zero,  and U? ^    ,oU.   over columns 

-I -I (s.  + 1 )n2    ' through  s   n2 

- \f XI 
s   n2       +  1   through — 

is cancelled by that over columns 

f + (s, + \)nl~l through -| + s  nl~l 
1 

Y"» 9 

— + s;)n2      + 1  through n 
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since the number of intervening ones is odd.     Thus,   U?^,    ,_1_U.,WT ^ j ^ 2   . 

,1 + 1 rows in Using Theorem 3 a new closed orthogonal matrix of 2 

canonic form is obtained by augmenting   & with the 2     sequences   {U?£    , © U.}. 
.rn When 2      rows are generated,  the number of consecutive zeros 

n2       - 1   =   (2r + 1)2 -l   =   2r 

at the beginning of rows 2 +1 through 2      is an even integer,  and a new 

key row of the form of (16) no longer exists. 

It is now shown that no new row can augment the constructed &   of 
,m 2"' rows without destroying mutual orthogonality.    It is easily shown (by 

setting   r =   0) that  & consists of the maximal canonic orthogonal matrix  & 
,m 

m 
for sequences of length 2      with 2r columns of all zeros before each column 

of  &    .     By Lemma 4,   &      corresponds to a  2      X 2       Hadamard matrix  H    . m ' m r m 
If the  n X n transformation   3" of Lemma 4 is applied to the transpose matrix 

6', 

ar<& a1 
me 

it is  seen that the effect of the all zero columns of  & is to expand  U      by m 
repeating each element of  H      2r times to form the expanded Hadamard matrix 

H      .    As an example,   consider the   & constructed for  n =   12: me r 

000000000000 

000001000001 

001000001000 

001001001001 

m 

"o 0 o o" 

0 10 1 

10 10 

1111 

me 

000000000000 

000000111111 

000111111000 

0 00111000111 

m 

000 0 

00 11 

0 110 

0 10 1 

23 



From (11) and the fact that  M is an expanded Hadamard matrix,   the me r 

dot product of every pair of sequences in  H        is   l/Z.    If a new row  X  can 

augment   Jtme   while preserving dot products of l/Z,   then using Lemma 4 the 

new row   3"      X]   can augment   © without destroying mutual orthogonality.    Let 

a. (2r + 1 -a.) be the number of zeros  (ones) in the i     (1 £ i £ 2     )   subsequence 

of length 2r + 1 in X.    Then it is possible to write the set of linear equations 

H! m 

>m 

n/2 

0 

as can be seen from the  n =   12   example: 

a   + a   +a,+a.   =  6 

ai + (3-a2) + (3-a3)+a4   =   6 

(3-a1) + (3-a2)+ a3+ a4  =  6 

(3-a2) + a2+ (3-a3) + a4   =  6. 

,m 
Since  M'       represents a  set of  2       linearly independent vectors (composed 

rn 
,m of 1' s and -l's) which span a   2       dimensional space,   the vector 

G   =  a ,a_,. . . a.. . . a^rn   can be expressed as a linear combination of the vectors 
12 I 2 

of  &'    .    Since C    is parallel to the first row vector   1^       of  H1      andLto all the m r m 
other vectors of  U'   ,  all the a's must be equal.     But since 

m 
m 

2 

I 
i= 1 

n 
I        2 
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must hold,  and because  2r+ 1   is odd,  integer solutions for the a's are 

impossible: 

_.m n_ -m-1 2r+l 
2    a.   =   — =*  a. =  n2 =   —^— 

1        2 i 2 

,m 
Therefore,   ©  cannot be augmented by any row and is saturated by the 2 

rows of the construction.    This finally completes the proof of Theorem 7. 

,m. 
Corollary 3.    If N =  2   and  n =  2     (m ^ 2),  the construction of 

Theorem 7 results in the canonic form of the closed maximal   &  of 2m rows, 

Proof:    This follows directly from Theorem 7 for   r =   0  and 

Lemma 5. 

,m 
Corollary 4.    If  N =  2,  n =   4k =   (2r + 1)2       and  r ^ 0,  the 

construction of Theorem 7 cannot result in a maximal  $ if an  n X n  Hadamard 
matrix exists. 

Proof:    This follows directly from Theorems 6 and 7;   n =   12 is 

the smallest possible example of a maximal,  but not necessarily canonic and 

not closed (see Theorem 2),   © which cannot be obtained by Theorem 7: 

G 

000000000000 
000011100001 
001011001011 
010001010100 
010110010110 
011111101001 
100100011101 
101001000100 
101101110011 
110100111110 
111010111010 
111110 10 1111 

,m, 
Corollary 5.    If  N =  2   and n =   2     (m ^ 1),   rows   U.   and  U        . , 
 *— „ J n-j + 1 

are complementary,   i.e. ,   U.® U     .   ,  =   1   ,   in the canonic form of the 
J        n-j+1 

closed maximal ©,  where  1 ^ j £ 2m. 

Proof:    For  m =   1   this is obvious from Theorem 5.    For m> 1, 

from Theorem 7 and (15),  if n =  2 
m u. m =   1 n By Corollary  1 and the fact 
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that   &  is closed and in standard form, 

,m 

B. 

U.©U     . ,.   =    \c       must holdWl ^ j s 2     . 
J        n-j + 1 v        J 

Some General Results  (N-ary Case) 

Theorem 8.    Givenany   N  and any orthogonal set   &,c§,   consist- 
ing of m  sequences of length n   composed from the elements   J.   =   [0, 1, . . . N. - 1 }, 
a corresponding orthogonal set 

6  =   © .U      &. 
Ai= 1   1 

of  rm+A   sequences of length n  composed from the elements   J  =   {0, 1, . . . , N-1 J 
can be constructed from   &,,   where   ©i is obtained by replacing element 
O^u^N.-l   in   ©,   with element (i- l)N,+u,   and & .   is an orthogonal set of   A 
sequences composed from the left-over elements    {rN   , rN, + 1, . . . , N- 1 } (if 
any). 

Proof:   Obviously,  the sequences in   &.   are_Lto the sequences in 

(&. (i/j)  and   ©.   since the sets of elements   {(i-lJN.+uj,   {(j-l)N.+uj  and 

[rN   , rN, + l, . . . , N- 1 J  are disjoint.    Referring to (1) and (4),  the sequences 

of &.   are mutually orthogonal because 

[(i-DNj+u] o[(i-l)Nj+v]    =   uov   =   J°|  "J 

Ji-DNj+u+ti-DNj+v 
remainder remainder Su+v 

Note that if  &.   is maximal,   <& is not necessarily maximal.    For example, 

with  N =  4,   N    =  2,  n =   6  and 

To 0 0 0 0 o] 
Gl [_0 0 1 0 0 lj (see Theorem 5), 

Theorem 8 yields 

oooooo"! 
0 0 1001 
222222 
2 2322 3 

26 



but the maximal canonic form obtained by an exhaustive technique is 

0 0 0 0 o o" 
0 0 1001 
112 112 
122 122 
2 3023 0 
2 3 12 3 1 
3 13 3 13 
32 3 32 3 

Also,   for  N =   3   and  &,   the same as above, 

canonic form (again obtained by exhaustion) is 

©     =   [22Z222] but the maximal 

000000 
00 1200 
0 10010 
112 111 
122 12 1 

Lemma 6a.    Given any N and a binary sequence   B  of length n 
composed from the elements 0, 1,   the set {U(B)j   contains at most 

N — (N even) 

N-l (N odd) 

B^ 0n 

V 

N — (N even) 
B =   0 

n 

N+l (N odd) 

mutually orthogonal sequences,  where U(B) is defined as any sequence   U( S 
which maps into B when the even(odd) elements of  U  are replaced by 0(1). 

f v» 
Proof:    Let b., u. and v. be the i      element of B,   U(B) and V(B),   respec- 

111 r 

tively,   where   V(B)   is also a member of   |U(B)}. .     By definition 

, f 0 \ (even) ( even) bi= \i i* ui= {odd r vi= {odd }• 
i.e. ,  the i      elements of any two sequences U(B),  V(B) e|U(B)[ have the same 
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parity, -^1 < i < n.    From this and (4b) the parity between sequences U(B) and 

V(B) is   p.  = 0,Vi-    Hence from (1) and (4a),   U(B)oV(B) =   0 iff u. ^ v.,\/~i. 

For   N  even(odd) there are N/2(N+l/2) even elements and N/2 (N-l/2) odd 

elements in  J =   {0, 1, 2, . . . , N- 1 }.    If  B / 0     the number of mutually orthogo- 

nal sequences in   (U(B) }  is limited to the number of odd elements in  J, 

namely,   N/2 (N-l/2) for   N  even (odd) since  u. / v.   must holdVi for U(B)_I_V(B). 

If  B =   0   ,   U(B) and V(B) consist of only even elements,   so the number of 

mutually orthogonal sequences in   [U(B)j   is limited to the number of even 

elements in  J,  namely,   N/2 (N+1/2) for   N  even (odd). 

Lemma 6b.    Given any  N  and any two sequences   U. 

specifying  [U.(B.)},   [U.(B.) }3U.-LU.   but   B.^B.,   at most 

N 

U. eS 
J 

2 

N-l 

(N even) 

(N odd) 

V  = 
N —    (N even) 

N+l (N odd) 

neither   B. nor B. 
1 J 

either B.  or B. 1 J 

,n 

,n 

mutually orthogonal sequences can be selected from 

fU.(B.)} U   £U (B )}, 

where   B  and   U(B)  are defined in Lemma 6a. 

Proof:    If  B.  =   B.,   fU.(B.)j =   fU.(B.)} 

d everything follows from Lemma 6a.    If  B. ^ B.,   let an 

U.   =   u. , . . . u., . . . u. 
l I I lk in 

U.   =   u. , . . . u., . . . u.     , 
J J1 Jk jn 
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B.   =   b... . .b., . . .b. i 11 lk in 

B.   =   b. . . . .b., . . .b.     , 
J J1 Jk Jn 

fU.(B.)}   =    {B.©2a} 

fU.(B.)}   =    fB.©2£} , 

a   =   a, . . .a, . . .« 1 k n 

|8  =   Py -i3k. ••Bn>   where 

ak, £k =   fO, 1,2.. . 

N 
2  " 

1 

N- 1 
2 

N 
2 

1 

N- 3 

N even   \ 

> b.. ,  b..   =  0 
Nodd     j     lk      Jk 

N even 

}bik' b.,   =   1 
N odd     1     iX"      JK 

In addition,  let 

G   =   fk}3u.k=ujk 

.odd 
{kfau..  4 u.n   and u., + u..    is lk       jk lk      jk /even 

Suppose a set   [B.® 2a t] of  77 mutually orthogonal sequences including   U.   is 
1 "C ,i 1 

selected,   where  a.   is the specific  a  determining the   i,       sequence in the 

set.    Since   [b., © 2cv . ,  }  over   t is composed of distinct elements,-^k  and 

because  U.oU. =   0,  the contribution to  U.o(B.© Zaf)   from  G is zero.yl; 1       J J i -C 
the contribution from fi is also zero since b., © 2cv , , and u., have different 

parities for £. Because U. oU. = 0 and B.oB. / 0, C is not an empty set, 

and the number of distinct k's in  C at an even relative phase does not equal 
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that for an odd phase.     Thus,   since only one of the   77 distinct elements 

[b., ©2a.,  }   can equal  u.,    for each value of  kf C>  there must be at least one 

sequence in   [B. Q Za    j  which is not orthogonal to  U..    By similar reasoning 

it follows that if   \B.®Za. }  contains fewer than  77 sequences,  at most  77 

mutually orthogonal sequences from   [B.©Za] U  {B.©2#J   are possible. 

Since   77  sequences can be obtained from   {U.(B.)}   (see Lemma 6a),  nothing 

is gained by choosing a   U._LU.   if B. ^.B.. 

Lemma 6c.    Given any  N  and any two sequences   U.,   U. (§ 

specifying   (U.(B.)j,    fU.(B.) }3U.J-U.   and   B._L_B.,  atmos )St 

N   (any N)   either   B.   or   B.   =   0n 
7
 1 J 

N (N even) 

N-l     (N odd)     ) neither   B.   nor   B.   =   0n 

mutually orthogonal sequences can be selected from 

fU.(B.)} u  fU.(B.)}, 

where   B  and   U(B)  are defined in Lemma 6a. 

Proof:    Referring to the proof of Lemma 6b for   B. / B.,   B. o B.  =   0 
& K 1 r      j'       1 j 

implies that the number of distinct k's in  C a-t an even relative phase equals 

that for an odd phase.    Hence,   since only one element of   fb., © Za .-,}   can 

equal u..    for each value of k ( C»   and because  b., ®ZR 9Xr  can assume only 
J J th 

distinct values,   where   £     is the specific   R determining the   t       sequence of 

the mutually orthogonal set   fB.©2j3i> }   including   U.,   it is always possible 

for   (B. © Za . ) o (B. QZR     ) =   0,iJ.t,m.    The maximum number of mutually 

orthogonal sequences selected from   [B.®Za] U  [B.®ZR]   is obtained from 

Lemma 6a by summing over these two disjoint sets. 

Lemma 6d.    Given any  N,  at most 
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nN 
2 

• 

n 
2 

(N- D+l 

even 
for  N j I and  n >   1 

* odd   S 

mutually orthogonal sequences from  §  can exist. 

Proof:    The number of binary sequences in the maximal   ©  is   n 

from Lemma 5 with the exception of the  n =   1   case (see Corollary 2).    From 

Lemma 6c there can be at most N/2  mutually orthogonal sequences for each 

B.   in  © for  N  even;    for   N  odd,  this number is (N-l)/2   for each  B. ^ 0     in 

© and   (N+l)/2   sequences can be added for 0      in   © (see Lemma 6a). 

Theorem 9.    Given any  N and a binary set   &,<=§,   of n   (n =  2 or 

a multiple of 4) sequences of length n  composed from the elements   J,   =   [0, 1 j , 

the set   © constructed in Theorem 8 with 

r   = 

N 
2 

N-l -'•I!}*"1!*} 

is maximal;    if  ©.,   expressed as a matrix,   is in the canonic form,   then the 

matrix  © is also canonic provided   &.   is placed above   &.   i»'V'l s i s r>   and ^ 

(for  N  odd) (N-l)     constitutes the last row. 

Proof:    There are 

rn+A  = 
|N 

N 
n 

even* 
odd   | 

f (N-n+i 

mutually orthogonal sequences in   & from Theorem 8.    From Lemma 6d,    © 

is maximal.    If the matrix  ©.   is in canonic form,  then   © must also be canonic 

by the construction of Theorem 8,  where elements of J =   {0, 1, . . . , N-1 j  are 

taken in pairs,  namely, (i-1)2 and (i-1)2+1 to compose   ©.,   according to increas- 

ing values with increasing i.    This follows from the definition of the canonic 
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form,   Lemma 5 and Lemma 6 which,   in effect,   preclude the choice of an 

&.   involving elements in addition to or instead of (i-l)2 and (i-1)2+1   if the 

canonic form is desired.    Note that for these elements   &.   is in canonic form 
I 

(from Theorem 8). 

A simple example of the maximal canonic form of Theorem 9 for  N =   6 

and  n =   4  is 

0000 
0 10 1 
10 10 
1111 
2 222 
2 32 3 
3 2 32 
3 333 
4444 
4545 
5454 
55 55 

where 

0000 
0 10 1 
10 10 
1111 

*!   = 

is the maximal canonic form for  N.  =  2   and  n =   4  (see Theorem 7).    If 

N =  7,  the maximal canonic form is obtained by augmenting the above   & 

with a thirteenth row  6666.    It is obvious from this example that   & is not 

necessarily closed in Theorem 8 even if   &.   is closed. 
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VI.       DISCUSSION 

Since the basic results of this report are presented as theorems 

in the text and are summarized in the abstract,   they are not repeated here. 

Instead,   several items of interest are mentioned which may be useful in 

extending these results or that help explain why extensions may be more 

difficult to obtain. 

The integers   J  constitute a commutative ring under addition © and 

multiplication  <%> modulo  N;    J is a field iff  N  is prime.    In this  report only 

the operation  © is used.    A property analogous to Lemma  1 using the opera- 

tion  ® exists,  however,  and is  stated without proof:   for  N  even, 

(U   ® W)o(V  ® W) =  UoV,-\/-U, V,W(g 

3w.   4  0  andg.c.d.    (N,w.)   =    l,-\/-i. 

In general,  neither this property nor Lemma  1 holds for   N  odd.    Thus,  the 

N  odd case can only be more difficult than the   N  even case. 

Lemma 2 can be generalized for  N  even as 

U ©U   =   0   «   u.   =   0 or y, V1. 

but this property appears to have value only in the binary case.    Similarly, 

the notion of complementation for  N  even is 

N  n N   \ / U © U =   &     ;  u. -*  u. © u. = T>Vi- comp 2 I comp 3    1 l comp       2     v 

The binary case is fundamentally simpler than the general case because 

N =  2 is the only even prime. 

Although the rows of a matrix can be permuted without changing the set 

of cross correlations between distinct row pairs,   this is not generally true 

under any permutation of the columns since the parities between rows may 

change (see (4)).     The following two column operations are manageable, 
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however. 

Let a cyclic shift of  j be defined as 

U
(T)   =   u ,. . .u  u   . 

n-j + I n   1 
u ;   O^r^n, 
n-r 

and let   UoV|   and    |UoV   represent the first  n-T and last   T  terms of (4a), 

respectively.     Then from (4b) 

U(T)OV(T)   = 
|UoV,   if Pn=p 

|UoV,   if p0^pn_r 

Similarly,   defining a reversal as 

Uo VI, if p         =p 1 n-r       n 

-UoVl, if p         ^p 1 rn-T       n 

U"  =   u  ...u      ,....u,;     1 s i s n, n n-i+1 1 

then 

U'oV   = 
Uo V,   if pn=p n 

-UoV,   if pQ^pn 

These properties hold for any  N,  but seem to have limited value. 

The dot product (8) is introduced primarily to exhibit a reversible 

transformation from binary orthogonal sequences under (4) to sequences of a 

Hadamard matrix.     The transformation preserves mutual orthogonality of 

sequences under the o operation and the common dot product n/2 of the 

corresponding sequences under the   •   operation.    An interesting question is 

whether there exist similar transformations for other values of  N,  not only 

for orthogonal sequences but near-orthogonal sequences as well.     This could 

yield results (of the same nature as,  but more general than Theorem 6) which 

facilitate the transfer of information about sequences under the  o  and  • 

operations . 

The binary construction of Theorem 7 has two main features.    Most 
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important is the realization of the maximal canonic form of  $ for  n =  2 

(m s 2).    If n =   (2r +1)2     (m ^2;r/ 0)  the disparity between 2     ,  the number 

of sequences in the saturated   © obtained by Theorem 7,  and  n,   the number of 

sequences  in the maximal set obtained by Theorem 6,  can be quite marked. 

This  suggests that the efficacy of a construction technique depends on  n,   as 

is the case with Hadamard matrices.    An arbitrary choice of a new sequence 

orthogonal to a given unsaturated  ©  (as in Theorem 7) can limit the eventual 

number of sequences in the saturated set. 

In general,   Theorem 8 gives only a lower bound to the number of 

sequences in the maximal   ©  for   N> 2   and a means of constructing a set 

which achieves the lower bound from a smaller known set (&.) .    Theorem 9 

indicates that the construction of Theorem 8 results in the maximal (i.e. ,  the 

upper bound is achieved by the lower bound) canonic matrix  © for any  N  and 

n =  2   or a multiple of 4 provided the maximal canonic form of the smaller 

matrix  ©.   is known.    Since maximal   &. 's   are known for many values of  n  of 

practical interest,   Theorem 9 (along with the construction of Theorem 8) is 

of fundamental importance in the N-ary case. 
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